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Abstract

We construct examples of singular self-dual Zollfrei metrics explicitly, by patching a pair of Petean’s self-dual split-signature
metrics. We prove that there is a natural one-to-one correspondence between these singular metrics and a certain set of embeddings
of RP3 to CP3 which has one singular point. This embedding corresponds to an odd function on R that is rapidly decreasing and
pure imaginary valued. The one-to-one correspondence is explicitly given by using the Radon transform.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A Zollfrei metric, which was introduced by Guillemin [6], is an indefinite metric of a manifold whose maximal
null geodesics are all closed. C. LeBrun and L.J. Mason investigated the self-dual Zollfrei metric of signature (2, 2),
and constructed its twistor correspondence [11]. They proved that only S2

× S2 and (S2
× S2)/Z2 admit a self-dual

Zollfrei conformal structure. Using the twistor correspondence, they also proved that such a structure on (S2
× S2)/Z2

is rigid, and, in contrast, S2
× S2 admits of many such structures. In the case of S2

× S2, the corresponding twistor
space is given by a pair (CP3, P), where P is the image of a totally real embedding RP3

→ CP3. Their theorem says
that there is a one-to-one correspondence between self-dual Zollfrei conformal structures on S2

× S2 and the pairs
(CP3, P), at least in the neighborhoods of the standard structures.

On the other hand, Tod [16] and Kamada [9] independently constructed infinitely many examples of S1-invariant
scalar-flat indefinite Kähler metrics on S2

× S2, which are automatically self-dual. Because the Zollfrei condition is an
open condition in the space of self-dual metrics [11], these examples should contain many self-dual Zollfrei metrics,
and a natural problem here is to decide whether or not all of them are Zollfrei. These examples are written explicitly
in closed form, so it might be possible to write down explicitly the twistor correspondence for such metrics. We are
not going to pursue these questions in this article; instead, we generalize the formulation to admit a certain singularity,
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and we construct explicit examples of the singular self-dual Zollfrei metric, whose twistor correspondence is written
down explicitly.

While LeBrun and Mason’s theorem stands only in the neighborhood of the standard metric because they are using
an inverse function theorem for Banach space, our examples contain many metrics far from the standard one. We use
the Radon transform to write down the twistor correspondence for our singular metric.

In [14], J. Petean classified the compact complex surfaces which admit indefinite Kähler–Einstein metrics. Petean
constructed many self-dual metrics on R4 to show that the complex tori or the primary Kodaira surfaces admit many
such metrics. Our examples of the singular self-dual Zollfrei metric are constructed by patching a pair of J. Petean’s
metrics on R4.

Our main theorem is to establish the twistor correspondence for some class of singular metrics. We construct
the singular metrics and the singular twistor spaces respecting a certain fiber bundle structure over S2 and CP2,
respectively. We prove the main theorem making use of a fiber bundle structure over a natural double fibration
S2
← Z → CP2 for some Z , which is the twistor correspondence for the standard Zoll metric on S2. Note that

a Zoll metric on a smooth manifold is a Riemannian metric whose geodesics are all closed, and the simplest one is
the standard metric on S2. The general case of twistor correspondence for Zoll structure is established by LeBrun and
Mason [10].

In [4], Dunajski and West investigated the neutral anti-self-dual conformal structures with a null conformal Killing
vector field. While they explicitly gave the local classification of such structures using twistor methods, few global
examples of such structures are known, and our singular metrics are regarded as such global examples. Note that our
singular metric has a natural S1-action; however, the corresponding Killing vector field of this action is different from
the null conformal Killing vector field that gives the above structure. It would be an interesting problem to generalize
their classification to the metrics admitting the singularity introduced in this article.

The organization of the paper is as follows: in Section 2, we recall the statement of the twistor correspondence
for the Zoll or Zollfrei structure, respectively following LeBrun and Mason [10,11]. We describe the twistor
correspondence for the standard structure on S2 or S2

× S2 by introducing local coordinates that we use later. In
Section 3, we introduce the definition of the singular self-dual Zollfrei metrics and the singular twistor spaces, and we
formulate a conjecture of the twistor correspondence between them (Conjecture 9).

In Section 4, we construct explicit examples of the singular self-dual Zollfrei metric by patching two Petean’s
metrics. Each example corresponds to an element of the set S(R2)sym defined below. Let S(R2) be the set of rapidly
decreasing real functions on R2, and S(R2)sym be the subset of S(R2) consisting of SO(2)-invariant elements, which
we call axisymmetric functions.

In Sections 5 and 6, we construct explicit examples of a singular twistor space. Each twistor space corresponds to an
element of iS(R)odd, where iS(R)odd is the set of odd functions that are rapidly decreasing and pure imaginary valued.
Our main theorem (Theorem 24) says that our conjecture holds when we restrict ourselves to the abovementioned
examples. This correspondence is given explicitly as a transform between f (x) ∈ S(R2)sym and h(t) ∈ iS(R)odd,
by using the Radon transform. In Section 7 we give the proof of Theorem 24, and the Appendix is the review of the
Radon transform.

2. Standard model

Zoll projective structures: A Zoll metric on a smooth manifold M is a Riemannian metric whose geodesics are all
closed (cf. [5]). An example of such a metric is the standard metric on S2. A Zoll projective structure on M is a
projectively equivalent class of torsion-free connections on the tangent bundle T M whose geodesics are all closed,
where two torsion-free connections are said to be projectively equivalent if and only if they have exactly the same
unparameterized geodesics [10]. Each Zoll metric defines a Zoll projective structure.

C. LeBrun and L.J. Mason proved the following property in [10]; there is a natural one-to-one correspondence
between

• equivalence classes of Zoll projective structures on S2,
• equivalence classes of totally real embeddings ι : RP2

→ CP2,
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in neighborhoods of the standard projective structure on S2 and the standard embedding of RP2. We call this
correspondence the twistor correspondence for Zoll projective structures. This correspondence is characterized by

the following condition; there is a double fibration S2 p
←−D q

−→CP2 such that

(1) q is a continuous surjection and p is a complex disk bundle, i.e. for each x ∈ S2, Dx = p−1(x) is biholomorphic
to the complex unit disk,

(2) qx : Dx → CP2 is holomorphic on the interior of Dx , and qx (∂Dx ) ⊂ N , where qx is the restriction of q on Dx
and N = ι(RP2),

(3) the restriction of q on D − ∂D is bijective onto CP2
− N ,

(4) {p(q−1(y))}y∈N is equal to the set of geodesics on S2.

The conditions (2) and (3) say that {q(Dx )}x∈S2 is a family of holomorphic disks on CP2 with boundaries on N which
foliate CP2

− N .
For the standard projective structure on S2, the twistor correspondence is described by the following diagrams

which are explained below:

P(TS2)

p

||yyyyyyyy q

##GG
GG

GG
GG

G D(TS2)

p

||yy
yy

yy
yy

y q

##GG
GG

GG
GG

G

S2 RP2 S2 CP2

(1)

We call the left diagram the real twistor correspondence and the right one the complex twistor correspondence.
We denote S2

= {t ∈ R3
: ‖t‖2 = 1}, TS2

= {(t, v) ∈ S2
× R3

: 〈t, v〉 = 0} and P(TS2) = {(t, [v]) ∈ S2
× RP2

:

〈t, v〉 = 0}. Let p : P(TS2)→ S2 be the projection and q(t, [v]) = [t × v], then we have the left diagram in (1).
Here we introduce a local coordinate system. We take an open covering {D+, D−,W } of S2 where D± =

{t ∈ S2
: ±t3 > 0} and W = S2

− {(0, 0,±1)}. We define local coordinates (x±1 , x±2 ) ∈ R2
' D± and

(α, β) ∈ R/2πZ× [−π2 ,
π
2 ] ' W byt1

t2
t3

 = ± (1+ (x±1 )
2
+ (x±2 )

2
)x±1

x±2
1

 =
cosα cosβ

sinα cosβ
sinβ

 .
The circle bundle P(TS2) is trivial over D± and W , and we define the fiber coordinate ζ± and ξ by

D± × (R ∪ {∞}) 3
(
x±1 , x±2 , ζ

±
)
←→

[
−ζ±

∂

∂x±1
+

∂

∂x±2

]
∈ P(TS2) |D± ,

W × (R ∪ {∞}) 3 (α, β, ξ)←→
[
−ξ

∂

∂α
+ cos2 β

∂

∂β

]
∈ P(TS2) |W .

(2)

The coordinate change is given by{
x±1 = cosα cotβ,

x±2 = sinα cotβ,
ζ± =

−ξ sinα tanβ + cosα
ξ cosα tanβ − sinα

. (3)

In terms of these coordinates, the map q : P(TS2)→ RP2 is described by(
x±1 , x±2 , ζ

±
)
7−→

[
1 : ζ± : −x±1 − x±2 ζ

±
]
,

(α, β, ξ) 7−→ [ξ cosα tanβ − sinα : −ξ sinα tanβ + cosα : ξ ] .
(4)

We define a complex disk bundle D(TS2) over S2 as a closure of one of the two connected components of
P(TCS2)−P(TS2), where P(TCS2) is the complex projectivization of TCS2

= TS2
⊗C. The choice of the component

is not essential because these components are canonically isomorphic by the complex conjugation.
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Extending real parameters ζ± and ξ to the complex parameter in the upper or lower half plane H± = {z ∈ C :
±Im z ≥ 0}, we can introduce the trivialization of D(TS2) by

D(TS2) |D± ' D± × (H± ∪ {∞}) 3 (x±1 , x±2 , ζ
±),

D(TS2) |W ' W × (H+ ∪ {∞}) 3 (α, β, ξ).

The coordinate change is given by the same formulae as (3) with complex coordinates. Then the map q : D(TS2)→

CP2 is obtained by the analytic continuation of q , i.e. q is given by the same formula as (4). It is easy to check that
the above conditions (1), (2), (3) and (4) hold if we put D = D(TS2).

Self-dual Zollfrei metrics: A Zollfrei metric on a smooth manifold M is an indefinite metric whose null geodesics
are all closed (cf. [6]). In [11], LeBrun and Mason investigated self-dual Zollfrei neutral metrics on four-dimensional
manifolds, where a neutral metric is an indefinite metric with signature (n, n) which is also called an indefinite metric
with split signature. An example of such a metric is the standard metric g0 on S2

× S2 given by g0 = π
∗

1 hS2 −π∗2 hS2 ,
where πi is the projection to the i th S2 and hS2 is the standard Riemannian metric on S2.

LeBrun and Mason proved the following property in [11]; let M = S2
× S2 and g be a self-dual Zollfrei neutral

metric on M , then every β-surface on M is homeomorphic to S2. By definition, β-plane is a tangent null 2-plane at a
point whose bivector is anti-self-dual, and β-surface is a maximal embedded surface whose tangent plane is β-plane
at every point.

LeBrun and Mason constructed the twistor correspondence for self-dual Zollfrei metrics. The statement is as
follows; there is a natural one-to-one correspondence between

• equivalence classes of self-dual Zollfrei conformal structures on S2
× S2,

• equivalence classes of totally real embeddings ι : RP3
→ CP3,

in neighborhoods of the standard conformal structure [g0] and the standard embedding of RP3. They also proved that
the Zollfrei condition is an open condition in the space of self-dual neutral metrics. It implies that the term ‘Zollfrei’ is
removable in the above statement. This correspondence is characterized by the following condition; there is a double

fibration S2
× S2 ℘

←− Ẑ Ψ
−→CP3 such that

(1) Ψ is a continuous surjection and ℘ is a complex disk bundle, i.e. for each x ∈ S2
× S2, Ẑx = ℘−1(x) is

biholomorphic to the complex unit disk,
(2) Ψx : Ẑx → CP3 is holomorphic on the interior of Ẑx and Ψx (∂Ẑx ) ⊂ P , where Ψx is the restriction of Ψ on Ẑx

and P = ι(RP3),
(3) the restriction of Ψ on Ẑ − ∂Ẑ is bijective onto CP3

− P ,
(4) {℘(Ψ−1(y))}y∈P is equal to the set of β-surfaces on S2

× S2.

The conditions (2) and (3) say that {Ψ(Ẑx )}x∈S2×S2 is a family of holomorphic disks on CP3 with boundaries on
P which foliate CP3

− P .
The twistor correspondence for the standard metric g0 on M = S2

×S2 is explained in Lemma 8.1 of [11]. For later
convenience, we give an alternative description of the double fibration for g0, and we describe the situation by using
local coordinates. The twistor correspondence is described by the following diagrams, which are explained below:

F̂
p̂

{{ww
ww

ww
ww

ww
Φ̂0

))SSSSSSSSSSSSSSSSSS Ẑ
℘

{{ww
ww

ww
ww

ww
Ψ0

$$HH
HH

HH
HH

HH

M F
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p̃

{{xxxxxxxxx

��

//

Φ0 ))RRRRRRRRRRRRRRRRR L⊥

{{xxxxxxxx

""FF
FF

FF
FF

F RP3 M Z

OO

p̃

{{wwwwwwwww

��

ΦC,0

##HHHHHHHHHH CP3

TS2

OO

��

P(TS2)

p

{{xx
xx

xx
xx

x q

))RRRRRRRRRRRRRRRR OR(1)

OO

π

��

TS2

OO

��

D(TS2)

p

{{ww
ww

ww
ww

w
q

##HH
HH

HH
HH

H
O(1)

OO

π

��
S2 RP2 S2 CP2

(5)

Here p, q, p and q are the same maps as in the diagrams (1), and the upward arrows are inclusions.
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It is convenient to use an identification of S2
× S2 with G̃r2(R4), where G̃r2(R4) is the Grassmannian consisting

of oriented 2-planes in R4. Each element of G̃r2(R4) is represented by a 4 × 2 matrix up to the right action of the
group GL+(2,R) consisting of 2× 2 matrices with a positive determinant. We write [[a, b]] for the class represented
by a 4× 2 matrix (a, b) with rank two.

Putting y0 = [0 : 0 : 0 : 1] ∈ RP3, RP3
− {y0} has a line bundle structure over RP2 defined by

[z1 : z2 : z3 : z4] 7→ [z1 : z2 : z3], and we denote this line bundle by OR(1). Using the Euclidean metric on
R3, OR(1) is identified with the tautological bundle L = {([ζ ], v) ∈ RP2

× R3
: v ∝ ζ } by

OR(1) 3 [t1 : t2 : t3 : λ] ←→ ([t1 : t2 : t3], λ(t1, t2, t3)) ∈ L

where t2
1 + t2

2 + t2
3 = 1.

Let F be the fiber product of the tangent bundle TS2
→ S2 and p : P(TS2) → S2, and let OR(1) → RP2 be the

tautological bundle. Let F = L‖ ⊕ L⊥ be the orthogonal decomposition over P(TS2) where L‖ = {(t, w, [v]) ∈ F :
w ∝ v} and L⊥ = {(t, w, [v]) ∈ F : w ⊥ v}. We define Φ0 : F → OR(1) to be the composition of the orthogonal
projection F → L⊥ with the map L⊥→ L ' OR(1) given by (t, w, [v]) 7→ ([t × v], w).

The embedding TS2
→ M = G̃r2(R4) is given by

TS2
3 (t, v) 7−→




t1 −v1
t2 −v2
t3 −v3
0 1


 ∈ G̃r2(R4). (6)

In this embedding, we have TS2 ∼= G̃r2(R4)− S2
∞ where S2

∞ consists of such a point given by


t1 −v1
t2 −v2
t3 −v3
0 0


 . (7)

TS2 is trivial over D± and W , and we define the coordinates (x±1 , x±2 , x±3 , x±4 ) ∈ R4 ∼= TS2
|D± and (α, β, ε1, ε2) ∈

S1
× [−

π
2 ,

π
2 ] × R2 ∼= TS2

|W so as to fit

±x±1 −x±4
±x±2 x±3
±1 0
0 1


 and




cosα ε2 sinα
sinα −ε2 cosα
tanβ ε1

0 1


 , (8)

in the manner of (6). Then the coordinate change is given by{
x±3 = ε1 sinα cotβ + ε2 cosα

x±4 = −ε1 cosα cotβ + ε2 sinα.
(9)

The coordinates on F are given by (x±1 , x±2 , x±3 , x±4 , ζ
±) and (α, β, ε1, ε2, ξ), and the map Φ0 is described by(

x±1 , x±2 , x±3 , x±4 , ζ
±
)
7−→

[
1 : ζ± : −x±1 − x±2 ζ

±
: −x±3 ζ

±
+ x±4

]
, (10)

(α, β, ε1, ε2, ξ) 7−→ [ξ cosα tanβ − sinα : −ξ sinα tanβ + cosα : ξ : −ε1ξ + ε2] .

Let O(1) ∼= CP3
− {y0} be the complex line bundle defined in a similar way to OR(1), and Z be the fiber product

of TS2
→ S2 and p : D(TS2) → S2. Similar to the Zoll case, we obtain the double fibration TS2

← Z → O(1) by
extending real parameters ζ± and ξ to the complex parameters.

The double fibration M = G̃r2(R4) ← Ẑ → CP3 is obtained as follows. For each x ∈ M , we define a
holomorphic disk Dx in CP3 with boundary on RP3 by the following; Dx = ΦC,0(p̃−1(x)) if x ∈ TS2, and

Dx = {[z1 : z2 : z3 : u] : Im u ≥ 0} ∪ {y0}
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if x ∈ S2
∞ of the form (7), where (z1, z2, z3) = t × v. Then {Dx }x∈M is a family of holomorphic disks in (CP3,RP3)

which foliates CP3
− RP3. Let

Ẑ = {(x, y) ∈ M × CP3
: y ∈ Dx },

then Ẑ has a natural smooth structure such that the maps ℘ : Ẑ → M and Ψ : Ẑ → CP3 are smooth. In this way,
we obtain the double fibration M ← Ẑ → CP3. The real version M ← F̂ → RP3 is obtained by restricting Ẑ to the
boundary.

Remark 1. By the identification G̃r2(R4) ∼= S2
× S2, the standard neutral metric g0 is described in the coordinates

of TD± by

1
1+ ‖x‖2 +∆2

(
dx±1 dx±3 + dx±2 dx±4

)
where

‖x‖
2
=

4∑
i=1

(x±i )
2,

∆ = x±1 x±3 + x±2 x±4 .

Remark 2. The diagram (5) is regarded as the global version of the diagram given in Figure 1 on page 18 of [4]. On
TD+, the null conformal Killing vector is given by a parallel transport of the coordinates (x3, x4).

Remark 3. The point y = [z1 : z2 : z3 : z4] ∈ RP3 corresponds to the embedded two sphere {[[a, b]] : ya = yb = 0}
⊂ G̃r2(R4) which is a β-surface for g0. On the other hand, the holomorphic disk corresponding to [[a, b]] ∈ G̃r2(R4)

is the closure of one of the two connected components of {y ∈ CP3
− RP3

: ya = yb = 0}.

3. Definition of the singularity

In this section, we introduce a certain singularity of metrics and twistor spaces, and state a conjecture for a singular
version of the twistor correspondence. The main purpose in this article is to construct explicit examples such that the
conjecture holds, restricted to these examples. That is explained in the following sections.

First, we study the twistor spaces for the self-dual Zolfrei metrics. In the non-singular case, as explained in
Section 2, the twistor space is given by a pair (CP3, P) where P is the image of a totally real embedding
ι : RP3

→ CP3. In [11], LeBrun and Mason proved that if the embedding ι is close to the standard one, then
there is a unique smooth family of holomorphic disks in CP3 with boundaries on P which satisfy that (1) the relative
homology class of each disk generates H2(CP3, P;Z) ∼= Z, and (2) interiors of these disks smoothly foliate CP3

− P .
We formulate the singular version of the above conditions. Let ι : RP3

→ CP3 be the continuous injection such
that the restriction RP3

− {y0} → CP3 is a totally real embedding, and let P = ι(RP3). We assume ι is homotopic to
the standard embedding RP3

⊂ CP3, then we have H2(CP3, P;Z) ∼= Z.

Definition 4. The pair (CP3, P) is said to satisfy the condition (]) if there is a unique family of holomorphic disks in
CP3 with boundaries on P which satisfy that

(] 1) the relative homology class of each disk generates H2(CP3, P;Z),
(] 2) interiors of these disks foliate CP3

− P , and the disks which do not contain y0 forms a smooth family.

In Sections 5 and 6, we construct examples of the pair (CP3, P) which is given by such singular embeddings and
which satisfy the condition (]).

Next, we define the ‘singular self-dual Zollfrei metric’. Let M be a four-dimensional smooth manifold, C be a
two-dimensional closed submanifold of M , and g be a neutral metric on M − C .

Definition 5. g is called a singular neutral metric with a singular β-surface C if, for all x ∈ C , there is an open
neighborhood x ∈ U ⊂ M with the coordinate u = (u1, u2, u3, u4) on U , which satisfies the following two
conditions:

(1) C ∩U = {u ∈ U : u2 = u3 = 0}.
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(2) Let j : (u1, u4, r, φ) 7→ (u1, u2, u3, u4) be the cylindrical coordinate given by u2 = r cosφ, u3 = r sinφ. Then,
for some smooth function h on U \ C , we can write hg = gst + g1 + o(r) such that gst = 2(du1du3 + du2du4)

is the standard neutral metric, g1 is a symmetric tensor satisfying j∗g1 = ρ(u1, u4, φ)r2dφ2 for some function ρ,
and o(r) is the error term satisfying limr→0 o(r) = 0.

We can also define the singular neutral conformal structure on M with singular β-surface C .

Remark 6. If we take the limit r → 0 for fixed (u1, u4, φ), then g0+ g1+o(r)→ g0+ρ · (− sinφdu2+cosφdu3)
2.

This limit defines a neutral metric on Tx M where x = lim u ∈ C . This metric depends on φ, but {u2 = u3 = 0}
always defines a β-plane. This is the reason why we call C a ‘singular β-surface’.

Definition 7. (i) A neutral metric g on M − C is called a singular self-dual neutral metric on M when

(1) g is self-dual on M − C , and
(2) g is a singular neutral metric with singular β-surface C .

(ii) g is called a singular Zollfrei metric when every null geodesic in M − C satisfies either of the following; it is
closed, or the ends of its closure in M are the points in C which are not necessarily distinct.

In the non-singular case, every β-surface is either S2 or RP2 if the metric g is self-dual Zollfrei (Theorem 5.14
of [11]). In our case, the β-surface is defined only on M − C . However, we will see later that, in our examples, the
closure of each β-surface in M is homeomorphic to S2, with two extra points (Propositions 16 and 23). Motivated by
these examples, we state the following conjectures.

Conjecture 8. Let g be a singular self-dual Zollfrei metric on M with a singular β-surface C. Let S be any β-surface
in M − C, and S be its closure in M. Then S − S is a finite subset of C and S is a topological manifold.

Let g and S be as in the above conjecture. We simply call S a β-surface for g.

Conjecture 9. There is a natural one-to-one correspondence between

• equivalence classes of singular self-dual Zollfrei conformal structures on S2
× S2 with one singular β-surface

C ' S2,
• equivalence classes of the pairs (CP3, P) which satisfy the condition (]), where P is the image of a totally real

embedding RP3
→ CP3 which has one singular point.

This correspondence should be characterized by the similar condition as in LeBrun and Mason’s theorems, and
the explicit formulation for our examples is given in Theorem 24. We formulated the conjecture for the simplest
possible singularity of the twistor space because otherwise, more complicated phenomenon would occur such as the
intersection of two singular β-surfaces.

4. Construction of singular metrics

In this section, we construct the examples of the singular self-dual Zollfrei metric, by patching a pair of Petean’s
indefinite self-dual metrics. We will see later that each example corresponds to an element of the set S(R2)sym

consisting of functions that are rapidly decreasing, axisymmetric, and real valued. Recall that a smooth function
f (x) on Rn is called rapidly decreasing if and only if for each polynomial P and each integer m ≥ 0

sup
∣∣|x |m P(∂1, . . . , ∂n) f (x)

∣∣ <∞
where |x | denotes the norm of x . We write S(Rn) for the set consisting of rapidly decreasing real valued functions on
Rn . We call f ∈ S(R2) axisymmetric if and only if f is SO(2)-invariant.

Petean’s metric is an indefinite metric over R4 of the form

g = 2(dx1dx3 + dx2dx4)+ f (x1, x2)
(

dx2
1 + dx2

2

)
, (11)
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where f is a smooth function. Such metrics are first introduced by J. Petean to construct examples of the indefinite
Kähler–Einstein metric on the complex tori or the primary Kodaira surfaces [14]. For the metric (11), we have an
indefinite orthonormal frame {ei }i given by

(e1, e2, e3, e4) = (∂1, ∂2, ∂3, ∂4)
1

2
√

D


1 −1 −1 1
1 1 −1 −1
−b b a −a
−b −b a a

 ,
where ∂i =

∂
∂xi

and

D = f 2
+ 4, a =

f +
√

D
2

, b =
f −
√

D
2

.

Let ∧2
− T R4 be the bundle of anti-self-dual bivectors. If we trivialize ∧2

− T R4 by the frame

e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4, e1 ∧ e4 + e2 ∧ e3,

then we can check that the induced Levi-Civita connection is trivial.

Remark 10. Petean’s metric is a special case of the Walker metric (cf. [12,13]). Furthermore, the orthonormal frame
defined above looks similar to that explained in [12].

Following the arguments in [11], the vectors

m1 = e1 − sin 2σ e3 + cos 2σ e4

m2 = e1 + cos 2σ e3 + sin 2σ e4
(12)

span the β-plane at every point in R4 for each σ ∈ RP1
= R/πZ. If we put

n1 = cos σ ∂1 + sin σ ∂2 −
f
2
(cos σ ∂3 + sin σ ∂4) ,

n2 = sin σ ∂3 − cos σ ∂4,

(13)

then the distribution 〈m1,m2〉 is equal to 〈n1, n2〉.

Proposition 11. Let g be a Petean’s metric of the form (11), then every β-surface on (R4, g) is given by the solutions
of {

− sin σ x1 + cos σ x2 = c1,

cos σ x3 + sin σ x4 + ϕ(x1, x2, σ ) = c2,
(14)

for some real constants σ, c1 and c2, where

ϕ(x1, x2, σ ) =
1
2

∫ λ

0
f (cos σ t − sin σ µ, sin σ t + cos σ µ)dt, (15)(

λ

µ

)
=

(
cos σ sin σ
− sin σ cos σ

)(
x1

x2

)
.

Proof. Notice that ϕ satisfies

cos σ
∂ϕ

∂x1
+ sin σ

∂ϕ

∂x2
=

f
2
. (16)

Therefore, the left-hand sides of (14) are both annihilated by n1 and n2. Hence these are constant along some β-
surface. �

Because (σ, c1, c2) and (σ + π,−c1,−c2) correspond to the same β-surface, we can assume σ ∈ [0, π).
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Remark 12. In [2], Blair et al. showed that the ‘hyperbolic twistor space’ over R4 equipped with a Petean’s metric
is holomorphically trivial. They proved this fact by constructing an explicit complex coordinate of the twistor space.
This construction actually works in the case of the ‘reflector space’ [8] or, in the other literature, the ‘product twistor
space’ [1]. In this way, we obtain essentially the same statement as Proposition 11.

Remark 13. One can show that a Petean’s metric in the form (11) is flat if and only if f is harmonic (i.e.
fx1x1 + fx2x2 = 0). Hence, for example, if we assume f is rapidly decreasing, then the metric is flat if and only
if f ≡ 0 (cf. [13,14]).

Definition 14. Let g be a Petean’s metric of the form (11), then g is called rapidly decreasing (respectively, compact
supported, or axisymmetric) if and only if f is so. On the other hand, the dual of g is another Petean’s metric of the
form

g∨ = 2(dx1dx3 + dx2dx4)− f (x1, x2)
(

dx2
1 + dx2

2

)
.

Remark 15. In the space of Petean’s metrics of the form (11), the flat metric, i.e. the case of f ≡ 0, is characterized
by an (S1

× S1)-invariance, where (τ1, τ2) ∈ S1
× S1 acts on R4 by(

x1 −x4
x2 x3

)
7−→ R(τ1)

(
x1 −x4
x2 x3

)
R(τ2)

−1,

(
R(τ ) =

(
cos τ − sin τ
sin τ cos τ

))
.

In the same way, the axisymmetric metrics are characterized by the (S1
×{1})-invariance. On the other hand, the ‘dual’

defines a Z2-action on the space of Petean’s metrics, then the flat metric is also characterized by the Z2-invariance.

We use the coordinates introduced in Section 2 from now on.

Proposition 16. Let g± be compact supported Petean’s metrics on TD± given by

g± = 2(dx±1 dx±3 + dx±2 dx±4 )+ f±(x±1 , x±2 )
(
(dx±1 )

2
+ (dx±2 )

2
)
. (17)

Then the conformal structures of these metrics extend to a self-dual indefinite conformal structure on TS2. Moreover,
if g± are both axisymmetric and dual each other, then every β-surface on TS2 is an embedded S1

× R whose closure
in G̃r2(R4) is homeomorphic to S2, with two extra points.

Proof. If g± are flat, i.e. f± ≡ 0, it is obvious that these conformal structures extend to the standard conformal
structure on G̃r2(R4) by the remark in Section 2. In the general case, because we assumed f± are compact supported,
these metrics are flat in some neighborhood of TS |W0 where W0 = {(α, β) ∈ W : β = 0}. Therefore, these conformal
structures extend to a self-dual conformal structure on TS2.

Now we suppose the axisymmetricity and the duality, and denote simply f+ = − f− = f . Because f is compact
supported, we can take R > 0 such that f (x+1 , x+2 ) = 0 when (x+1 )

2
+ (x+2 )

2 > R2. By the Proposition 11, each
β-surface on TD± is given by{

− sin σ± x±1 + cos σ± x±2 = c±1 ,

cos σ± x±3 + sin σ± x±4 ± ϕ(x
±

1 , x±2 , σ
±) = c±2 ,

(18)

for some (σ±, c±1 , c±2 ), where ϕ is defined by (15). We observe that when (σ+, c+1 , c+2 ) = (σ−, c−1 , c−2 ),
corresponding β-surfaces are nicely extended in TS2. Therefore, we drop the signs on σ, c1, c2 for simplicity. Changing
the coordinates by (3) and (9), the β-surfaces are described in the regions {(α, β, ε1, ε2) ∈ T W : 0 < | tanβ| < R−1

}

by {
sin(α − σ) = c1 tanβ,
−c1ε1 − cos(α − σ)ε2 + ψ(α, β, σ ) = c2,

(19)

where ψ is defined as the following. Let

f̂ (±)(σ, µ) =
∫
±∞

0
f (cos σ t − sin σ µ, sin σ t + cos σ µ)dt
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be the ‘half Radon transform’ of f . Then we define ψ , when 0 < tanβ < R−1,

ψ(α, β, σ ) =


1
2

f̂ (+)(σ, sin(α − σ) cotβ) if cos(α − σ) > 0

1
2

f̂ (−)(σ, sin(α − σ) cotβ) if cos(α − σ) < 0

and when −R−1 < tanβ < 0,

ψ(α, β, σ ) =


−

1
2

f̂ (−)(σ, sin(α − σ) cotβ) if cos(α − σ) > 0

−
1
2

f̂ (+)(σ, sin(α − σ) cotβ) if cos(α − σ) < 0.

Let f̂ be the Radon transform explained in the Appendix, then we have f̂ (+) = − f̂ (−) = 1
2 f̂ from the

axisymmetricity. Moreover, f̂ (µ) = f̂ (σ, µ) is even for µ and does not depend on σ . Therefore, Eq. (19) extends to
| tanβ| < R−1 by exchanging ψ(α, β, σ ) with

ψ̃(α, σ ; c1) =


1
4

f̂ (c1) if cos(α − σ) > 0

−
1
4

f̂ (c1) if cos(α − σ) < 0.
(20)

Notice that cos(α − σ) 6= 0 near {β = 0} because sin(α − σ) is close to zero by the first equation of (19). Hence
we have proved that a suitable pair of β-surfaces on TD± extends to a β-surface on TS2. This β-surface has a fiber
bundle structure with respect to the projection TS2

→ S2. In fact the base space is a big circle on S2 and the fibers are
orientable linear lines in some tangent space of S2. Therefore, it is isomorphic to a cylinder S1

× R. If we take any
point on this β-surface, and let it move away along the fiber, then the point goes to


∓c1 sin σ cos σ
±c1 cos σ sin σ
±1 0
0 0


 ∈ S2

∞, (21)

so the proof is completed. �

The two points (21) are actually antipodal, i.e. they are exchanged by the natural involution of S2
∞ which is defined

as a deck transformation for the orientation forgetting map G̃r2(R4)→ Gr2(R4).

Proposition 17. Let g± be Petean’s metrics on TD± in the form (17), and we assume that g± are compact supported,
axisymmetric and dual each other. Then the induced self-dual conformal structure on TS2

= G̃r2(R4) − S2
∞ defines

a singular self-dual conformal structure on G̃r2(R4) in the sense of Definition 5.

Proof. We check that S2
∞ is a singular β-surface. As an example, we study the coordinate neighborhood U given by

R4
3 (u1, u2, u3, u4) 7−→




u1 −u4
1 0
0 1
u2 u3


 ∈ G̃r2(R4).

In this coordinate, S2
∞ is given by {u2 = u3 = 0}. We can check that U ∩ TD+ is given by {x ∈ TD+ : x+3 < 0} =

{u ∈ U : u2 < 0}, and by a direct calculation,

g+ =
1
u2

2

[
2(du1du3 + du2du4)+ r2 f (u1 tanφ − u4,− tanφ)

{
(1+ u2

1)dφ
2
+ (sinφdu1 + cosφdu4)

2
}]

where u2 = r cosφ, u3 = r sinφ. If we put ρ = f · (1+ u2
1) and so on, the condition (2) of Definition 5 is satisfied.

In this way, checking several coordinate neighborhoods, we can show that S2
∞ is a singular β-surface for the metric.

�
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Remark 18. The (S1
× S1)-action on TD± extends to G̃r2(R4) by

[[a, b]] 7−→ [[R̃(τ1, τ2)(a, b)]]
(

R̃(τ1, τ2) =

(
R(τ1) O

O R(τ2)

))
.

The standard metric on G̃r2(R4) is invariant under this action, and our singular metric is invariant under (S1
× {1})-

action.

Next, we check the Zollfrei condition for our singular metric. In the non-singular case, self-dual metric g is Zollfrei
if every β-surface is an embedded S2 (Theorem 5.14. of [11]). Although we cannot apply this theorem in our case, we
can check the condition directly by writing down null geodesics explicitly.

First, the following formulae are checked by a direct calculation:

Lemma 19. Let ∇ be the Levi-Civita connection of a Petean’s metric of the form (11) and let D = f 2
+ 4, then

∇∂3 = ∇∂4 = 0,

∇∂1∂3 =
f ∂1 f
2D

∂3, ∇∂1∂4 =
f ∂1 f
2D

∂4,

∇∂1∂1 =
f ∂1 f
2D

∂1 +
∂1 f

2
∂3 −

∂2 f
2
∂4.

(22)

Proposition 20. The singular self-dual metric on G̃r2(R4) in Proposition 17 is singular Zollfrei.

Proof. Because every null geodesic is contained in some β-surface, the image of a null geodesic by the projection
TS2
→ S2 is contained in some big circle of S2. We prove that this image is either one point or a whole circle. If

the image is one point, from (18) or (19), the null geodesic must be a linear line in some tangent space of S2. This is
actually a geodesic, because, for example on TD+, we have ∇∂3 = ∇∂4 = 0 by Lemma 19. Notice that the end points
of such a linear line are the antipodal points on S2

∞.
For the other case, we first study about a null geodesic in TD+ whose image on D+ is not one point. Without

any loss of generality, we can assume this geodesic is contained in a β-surface with σ+ = 0 in (18) because of the
axisymmetricity. Let c(s) be a curve contained in this β-surface. If the projected image on D+ is not one point, such
a curve is always written in the form

x+1 = s, x+2 = c1, x+3 = c2 − ϕ(s, c1, 0), x+4 = ν(s),

at least for a small interval of parameter s, where ν(s) is an unknown function. Then the velocity vector is

ċ(s) = ∂1 −
f
2
∂3 +

∂ν

∂s
∂4.

Using Lemma 19, we have

∇̃ ∂
∂s

ċ(s) =
f ∂1 f
2D

ċ(s)+
(

d2ν

ds2 −
∂2 f

2

)
∂4,

where ∇̃ is the covariant derivative along c(s). Hence c(s) is an unparameterized geodesic if and only if

d2ν

ds2 =
1
2
∂2 f (s, c1). (23)

Let ν0(s) be the solution of (23) with ν0(0) = ν′0(0) = 0, then any solution of (23) is given by

ν(s) = ν0(s)+ q1s + q2,

for some constants q1 and q2. Every null geodesic on TD+ whose image to D+ is not one point is given by rotating the
above c(s). Note that ν0 is an even function, moreover, because f is compact supported, ν0 is a degree one polynomial
for |s| � 0. Therefore, we have

ν0(s) = A1|s| + A2 (|s| > R) , (24)

where A1 and A2 are constants, and R is a large constant such as f (x) ≡ 0 for |x | > R.
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Now notice the following geodesics on TD± parameterized by s±, respectively:

x±1 = s±, x±2 = c1, x±3 = c2 ∓ ϕ(s±, c1, 0), x±4 = ±ν0(s±)+ q±1 s± + q±2 .

We prove that these geodesics extend smoothly in TS2 for suitable q±1 and q±2 , by changing the parameter

u+ =


−

1
s+

s+ > 0

−
1

s−
s− < 0,

u− =


−

1
s−

s− > 0

−
1

s+
s+ < 0.

Changing the coordinates by (3) and (9), these geodesics are written on u+ < 0

α = tan−1(−c1u+)
(
−
π

2
≤ α ≤

π

2

)
, β = tan−1

(
−u+(1+ c2

1u2
+)
−

1
2

)
,

ε1 =
1

1+ c2
1u2
+

(
c1u2
+Θ + Ξ

)
, ε2 =

1

(1+ c2
1u2
+)

1
2
(Θ − c1Ξ ) ,

where

Θ = c2 − ϕ
(
−u−1
+ , c1, 0

)
, Ξ = u+ν0

(
−u−1
+

)
− q+1 + q+2 u+.

Similarly on u+ > 0, (α, β, ε1, ε2) are given by the same equation by exchanging

Θ = c2 + ϕ
(
−u−1
+ , c1, 0

)
, Ξ = −u+ν0

(
−u−1
+

)
− q−1 + q−2 u+.

By similar argument in the proof of Proposition 16, Θ extends smoothly to u+ = 0, and from (24), Ξ extends
smoothly to u+ = 0 iff q−1 = q+1 and q−2 = q+1 + 2A1. By similar argument for u−, we obtain the same conditions.
Therefore, these geodesics are nicely extended to a closed curve if q−1 = q+1 and q−2 = q+1 + 2A1.

The rest possibility is that the projected image of a null geodesic is contained in the equator W0. However, these
null geodesics are, of course, closed, because the conformal structure is standard around TS2

|W0 . �

So far, we assumed that the Petean’s metrics are all compact supported, but this assumption is weakened to be
‘rapidly decreasing’. Actually the argument of the extension to TS2

|W0 works well essentially in the same manner,
and only one thing that we have to check is the smoothness at infinity, which is almost obvious from the rapidly
decreasing condition. In all, we have

Theorem 21. Let g+ and g− be rapidly decreasing Petean’s metrics on R4, then the disjoint union (R4, [g+]) q
(R4, [g−]) naturally extends to a self-dual indefinite conformal structure on G̃r2(R4)− S2

∞. Moreover, if g± are both
axisymmetric and dual with each other, then this conformal structure defines a singular self-dual Zollfrei conformal
structure on G̃r2(R4) with singular β-surface S2

∞.

Remark 22. These are the required examples. Notice that each singular self-dual Zollfrei conformal structure
corresponds to a function f ∈ S(R2)sym by using the Petean’s metric g+ which corresponds to f .

From Proposition 16, we also have

Proposition 23. Conjecture 8 holds for the singular self-dual Zollfrei conformal structure corresponding to f ∈
S(R2)sym.

5. Construction of singular twistor spaces

Recall that we identify RP3
− {y0} with the line bundle OR(1) → RP2, where y0 = [0 : 0 : 0 : 1]. Let S(R)odd

be the subset of S(R) consisting of odd functions. For each s(t) ∈ S(R)odd, we define a smooth section s̃ of the line
bundle OR(1)→ RP2 by s̃ ([0 : 0 : 1]) = [0 : 0 : 1 : 0] and

s̃
([
− sin

θ

2
: cos

θ

2
: t
])
=

[
− sin

θ

2
: cos

θ

2
: t : s(t)

]
. (25)
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Then we put

P = OR(1)+ i s̃(RP2) =
{

u + i s̃(x) ∈ O(1) : x ∈ RP2, u ∈ OR(1)x
}
,

which is a deformation of OR(1) in O(1). Adding the point y0 to the pair (O(1), P), we have the twistor space
(CP3, P̂). Notice that P̂ is the image of a map ι : RP3

→ CP3 given by ι(y0) = y0 and

OR(1) 3 u 7−→ u + i s̃(π(u)) ∈ P

using the projection π . For later convenience, we use the pure imaginary valued function h(t) = is(t) ∈ iS(R)odd

from now on. Then our goal is:

Theorem 24. There is a natural one-to-one correspondence between

• singular self-dual Zollfrei conformal structures on G̃r2(R4) corresponding to f (x) ∈ S(R2)sym,
• the pairs (CP3, P̂) corresponding to h(t) ∈ iS(R)odd,

which satisfies the following property. There is a double fibration G̃r2(R4)
℘
←− Ẑ Ψ

−→CP3 such that

(1) Ψ is a continuous surjection and ℘ is a complex disk bundle, i.e. for each x ∈ G̃r2(R4), Ẑx = ℘−1(x) is
biholomorphic to the complex unit disk,

(2) Ψx : Ẑx → CP3 is holomorphic on the interior of Ẑx and Ψx (∂Ẑx ) ⊂ P̂, where Ψx is the restriction of Ψ on
Ẑx ,

(3) the restriction of Ψ on Ẑ − ∂Ẑ is bijective onto CP3
− P̂,

(4) {℘(Ψ−1(y))}y∈P is equal to the set of β-surfaces on G̃r2(R4).

Moreover, this correspondence is explicitly given by the formulae f = 2i
(
∂
∂t h
)∨

and h = − 1
4H f̂ .

Remark 25. The dual Radon transform (·)∨ and the Hilbert transform H are explained in the Appendix.

Here we explain some reasons why the above construction of the twistor space is reasonable. Firstly, recall that
our singular metrics are standard on the equator W0, Therefore, the twistor spaces would be standard over the
corresponding point [0 : 0 : 1] ∈ RP2. This corresponds to s̃([0 : 0 : 1]) = [0 : 0 : 1 : 0]. Moreover, our
singular metrics have S1-symmetry, Therefore, the twistor spaces would also have a similar symmetry. From the
twistor correspondence for the standard Zoll projective structure, the S1-action on RP2 is given by

S1
3 τ : [z1 : z2 : z3] 7→ [cos τ z1 − sin τ z2 : sin τ z1 + cos τ z2 : z3].

And the lift of this S1-action on OR(1) = RP3
− {y0} is given by

[z1 : z2 : z3 : z4] 7→ [cos τ z1 − sin τ z2 : sin τ z1 + cos τ z2 : z3 : z4].

Therefore, s̃ should be S1-equivariant, if the twistor space is given by section s̃ of OR(1), and if it corresponds to our
singular metric. Such a section is given by an odd function s(t) in the manner of (25).

Before we start to prove Theorem 24, we remark, firstly, that we study the real twistor correspondence for our
singular self-dual Zollfrei metric. This real correspondence is important not only for its geometric significance but
also as a step in the construction of the complex correspondence. We define a map Φ : F → OR(1) by

F |D± 3
(
x±1 , x±2 , x±3 , x±4 , ζ

)
7−→

[
1 : ζ : −x±1 − x±2 ζ : −x±3 ζ + x±4 ±

ϕ

sin σ

]
,

F |W0 3 (α, 0, ε1, ε2, ξ) 7−→

[
− sinα : cosα : ξ : −ε1ξ + ε2 +

1
4

f̂ (ξ)
]
, (26)

where ζ = − cot σ and W0 = {β = 0} ⊂ W . From (18) and (19), the inverse image of a point by this map is a
β-surface. Hence OR(1) is identified with the space of β-surfaces by this map.

Next, we study the complex structure on Z , where Z is given in diagram (5). Z has a natural complex structure
defined from the self-dual metric on TS2 as the following (cf. [11], see also [2]). Recall that for a given Petean’s
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metric, any β-plane at a point is written in the form 〈n1, n2〉 where n1, n2 is given by (13). Putting ζ = − cot σ and
by the ‘analytic continuation’, we obtain the complex tangent vectors

n′1 = −ζ
+
∂

∂x+1
+

∂

∂x+2
−

f
2

(
−ζ+

∂

∂x+3
+

∂

∂x+4

)
, n′2 =

∂

∂x+3
+ ζ+

∂

∂x+4
,

on Z |TD+ . The complex structure on Z |TD+ is defined so that its (0,1)-vector space is spanned by n′1, n
′

2 and ∂

∂ζ+
.

The key to prove Theorem 24 is to construct a map ΦC : Z → O(1) which is described in the form(
x+1 , x+2 , x+3 , x+4 , ζ

+
)
7−→

[
1 : ζ+ : −x+1 − x+2 ζ

+
: −x+3 ζ

+
+ x+4 + H(x+1 , x+2 , ζ

+)
]

on D+. We will construct the surjection Ψ : Ẑ → CP3 as an extension of ΦC. Notice that ΦC is holomorphic on
Z |D+ with respect to the above complex structure if and only if (i) H(x+1 , x+2 , ζ

+) is holomorphic for ζ+ and (ii) H
solves(

−ζ+
∂

∂x+1
+

∂

∂x+2

)
H(x+1 , x+2 , ζ

+) =
f (x+1 , x+2 )

2

(
(ζ+)2 + 1

)
. (27)

6. Holomorphic disks

We prove the following in this section.

Proposition 26. The pair (CP3, P̂) corresponding to a function h(t) ∈ iS(R)odd satisfies the condition (]).

We first study the holomorphic disks which do not contain the singular point y0. Recall that any holomorphic disk
in (CP2,RP2) whose relative homology class generates H2(CP2,RP2

;Z) ∼= Z is given by one of the hemispheres of
a complex line (pp. 498–500 of [10]). We call such a disk the standard disk in (CP2,RP2). Note that P̂ is homotopic
to the standard RP3 in CP3, so H2(CP3, P̂;Z) ' Z.

Lemma 27. Let D be the complex unit disk and ϕ : D → O(1) be a continuous map with ϕ(∂D) ⊂ P. If ϕ
is holomorphic on the interior of D and the relative homology class [ϕ] generates H2(CP3, P̂;Z), then ϕ is a
holomorphic lift of some standard disk in (CP2,RP2), i.e. the image of the composition π ◦ ϕ is a standard disk
where π : O(1)→ CP2 is the projection.

Proof. Let i : O(1)→ CP3 be the inclusion, then we have the isomorphisms

Z ∼= H2(CP2,RP2)
π∗
←− H2(O(1), P)

i∗
−→ H2(CP3, P̂) ∼= Z.

Since [i ◦ ϕ] generates H2(CP3, P̂), [π ◦ ϕ] also generates H2(CP2,RP2). Because π ◦ ϕ defines a holomorphic disk
in (CP2,RP2), it is a standard disk. �

Now let D be a standard disk in (CP2,RP2) and FD be the set of holomorphic lifts of D in (O(1), P). In the proof
of the next lemma, we follow the method of LeBrun and Mason [10,11].

Lemma 28. FD has a structure of a smooth family of holomorphic disks parameterized by R2.

Remark 29. In our situation, we can calculate explicitly, and we have no need to use the inverse function theorem of
Banach space. Therefore, we can treat many metrics which are far from the standard one.

Proof (Proof of 28). Recall that O(1) ∼= CP3
− {y0} (y0 = [0 : 0 : 0 : 1]) and the projection π : O(1) → CP2 is

given by [z1 : z2 : z3 : z4] 7→ [z1 : z2 : z3]. Let U be the affine open set in O(1) whose coordinate is defined by

z1 =
z2 − iz1

z2 + iz1
, z2 =

z3

z2 + iz1
, z3 =

z4

z2 + iz1
.

Then the intersection B := OR(1) ∩U is equal to the set given by

z1z1 = 1, z1z2 = z2, z1z3 = z3.



F. Nakata / Journal of Geometry and Physics 57 (2007) 1477–1498 1491

We can parameterize B by (z1, z2, z3) = (eiθ , t1e
iθ
2 , t2e

iθ
2 ) by using θ , t1 and t2, or equivalently z = [− sin θ

2 : cos θ2 :
t1 : t2]. Therefore, we have B ∼= R3/Z where the Z-action is generated by (θ, t1, t2) 7→ (θ +2π,−t1,−t2). Similarly,
we can parameterize B ′ := P ∩U by

(z1, z2, z3) = (eiθ , t1e
iθ
2 , [t2 + h(t1)]e

iθ
2 ).

Notice that (z1, z2) defines a coordinate on the open set π(U ) in CP2, and that π(B ′) = π(B) ∼= R2/Z is equal to
RP2
− {[0 : 0 : 1]}.

The boundary ∂D of a standard holomorphic disk D is a real projective line in RP2. Each real line in RP2 is
described by either form of

(1) (z1, z2) = (eiθ , a + aeiθ ) for some a ∈ C,
(2) (z1, z2) = (e2iα, ξeiα) for some α ∈ S1

= R/2πZ,

where θ ∈ S1 and ξ ∈ R are the parameters. The case (2) occurs when the circle passes through [0 : 0 : 1]. Notice that
in the case (2), α and α + π correspond to the same line with opposite orientations.

We give the proof for the two cases separately; one is the case when ∂D is given by (1) and the other case is by (2).
In case (1), any lift of ∂D is described by

(z1, z2, z3) =
(

eiθ , a + aeiθ ,
[
u(θ)+ h

(
ae−

iθ
2 + ae

iθ
2

)]
e

iθ
2

)
(28)

with the parameter θ ∈ S1, where u(θ) is an unknown real function satisfying u(θ + 2π) = −u(θ). Notice that for
a fixed a ∈ C, there are two possibilities of D, i.e. the upper and lower hemispheres. Corresponding to this, we want
to choose u(θ) so that the circle (28) extends holomorphically to the interior or exterior region of {|ω| = 1} where
ω = eiθ . In the interior case, we want to choose u(θ) such that z3 contains no negative power in its Fourier expansion.
Because u is real valued and h is pure imaginary valued, we can expand

u(θ) =
∞∑

l=0

{
ul eiθ(l+ 1

2 ) + ul e−iθ(l+ 1
2 )
}
, (29)

h
(

ae−
iθ
2 + ae

iθ
2

)
=

∞∑
l=0

{
ha,l eiθ(l+ 1

2 ) − ha,l e−iθ(l+ 1
2 )
}
. (30)

Therefore, if we put ul = ha,l for l ≥ 1, then we have

z3 =
[
u(θ)+ h

(
ae−

iθ
2 + ae

iθ
2

)]
e

iθ
2 = 2

∞∑
l=0

ha,l eiθ(l+1)
+ κ + κeiθ ,

where κ = u0 − ha,l can be taken as an arbitrary complex constant. The circle (28) is described in the homogeneous
coordinate by

[1 : ζ : −2(Im a)+ 2(Re a)ζ : −2(Im κ)+ 2(Re κ)ζ + F(a, ω(ζ ))] (31)

with the parameter ζ ∈ R ∪ {∞}, where

ω(ζ ) =
ζ − i
ζ + i

, F(a, ω) =
4i

1− ω

∞∑
l=0

ha,l ω
l+1. (32)

The circle (31) extends holomorphically to {Im ζ ≥ 0} and {|ω| ≤ 1}, and hence FD is a smooth family parameterized
by κ ∈ C ' R2.

The exterior case is, in the same way, given by (31) using F(a, ω−1) instead of F(a, ω). In this case, (31) extends
to {Im ζ ≤ 0} and {|ω| ≥ 1}.

In case (2), it is enough to consider the standard holomorphic disk given by {ξ ∈ C : Im ξ ≥ 0}. In this case, any
lift of ∂D is described by

(z1, z2, z3) = (e2iα, ξeiα, [u(ξ)+ h(ξ)]eiα) (33)
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with the parameter ξ ∈ R, where u(ξ) is an unknown real function. We define a holomorphic function G(ξ) on
{Im ξ > 0} by

G(ξ) =
1
π i

∫
∞

−∞

h(µ)
µ− ξ

dµ.

Then G(ξ) extends smoothly to {Im ξ = 0} by

G(ξ) =
1
π i

pv.

∫
∞

−∞

h(µ)
µ− ξ

dµ+ h(ξ). (34)

The first term of the right-hand side is equal to −Hh(ξ) where H is the Hilbert transform defined by (A.4). If we put
v(ξ) = u(ξ)+Hh(ξ), then we have

u(ξ)+ h(ξ) = v(ξ)+ G(ξ)

on {Im ξ = 0}. The circle (33) is described in the homogeneous coordinate by

[− sinα : cosα : ξ : v(ξ)+ G(ξ)] (35)

with the parameter ξ ∈ R. If the circle (35) is bounded by a holomorphic disk, v(ξ) should extend holomorphically to
the upper half plane of ξ . Because v(ξ) is real valued on R, it extends to a holomorphic function on whole C. Hence
v(ξ) expands to a non-negative power series of ξ with real coefficients.

Moreover, (35) converges to y0 = [0 : 0 : 0 : 1] by ξ → ∞, if and only if v(ξ) has any term higher than or
equal to ξ2. These cases are removable, because the disk is not contained inO(1). Hence v(ξ) should be a degree-one
polynomial. Because the ambiguity is given by the coefficients of v(ξ), FD is a smooth R2-family of holomorphic
disks. �

Let F be the set of all the holomorphic disks in (O(1), P) such that the relative homology class of each disk
generates H2(CP3, P̂;Z). Then we have F = ∪FD from Lemma 27.

Lemma 30. F has a structure of a smooth family of holomorphic disks parameterized by TS2 such that interiors of
the disks of F foliate O(1)−O(1) |RP2 .

Proof. Recall the diagram (5), and we construct a smooth map ΦC : Z → O(1) as a deformation of ΦC,0 such that
{ΦC(p̃−1(x))}x∈TS2 is equal to F . Using the coordinate defined in Section 2, we define ΦC on Z |D+ by(

x+1 , x+2 , x+3 , x+4 , ζ
+
)
7−→

[
1 : ζ+ : −x+1 − x+2 ζ

+
: −x+3 ζ

+
+ x+4 + H+(x+1 , x+2 , ζ

+)
]
, (36)

H+(x+1 , x+2 , ζ
+) = F

(
a, ω(ζ+)

)
, a =

i
2
(x+1 + ix+2 ),

where F is given in (32). Similarly, we define ΦC on Z |D− by the same formula as (36) by exchanging the sign ·+

with ·− and

H−(x−1 , x−2 , ζ
−) = −F

(
a, ω(ζ−)

−1)
, a =

i
2
(x−1 + ix−2 ).

Note that the parameters run {Im ζ+ ≥ 0} and {Im ζ− ≤ 0}. On the other hand, we define ΦC on Z |W0 = {β = 0} by

(α, 0, ε1, ε2, ξ) 7−→ [− sinα : cosα : ξ : −ε1ξ + ε2 + G(ξ)] . (37)

From (31) and (35), we obtain that {ΦC(p̃−1(x))}x∈TS2 is equal to F . Hence F is parameterized by TS2.
We have to prove that the above ΦC is smooth. We now check that (36) and (37) are continued. Here we omit the

sign ‘+’ for the simplicity. Using the coordinate change

ξ = −i cotβ
ω − e2iα

ω + e2iα ,

which is obtained from (3) and (32), and so on, we have

[1 : ζ : −x1 − x2ζ : −x3ζ + x4 + H(x1, x2, ζ )]
= [ξ cosα tanβ − sinα : −ξ sinα tanβ + cosα : ξ : −ε1ξ + ε2 + B(α, β, ξ)] ,
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where

B(α, β, ξ) =
4eiα

ω + e2iα

∞∑
l=0

ha,l ω
l+1. (38)

In general, we define the operator Π on the L2-functions on S1
= {|ω| = 1} by

Π : u(ω) =
∞∑

k=−∞

ukω
k
7−→

∞∑
k=0

ukω
k .

As explained in [15], when |ω| < 1 we have

Π u(ω) =
1

2π i

∫
S1

u(η)
η − ω

dη =
1

2π

∫
S1

u(eiθ )

eiθ − ω
eiθdθ.

Hence, in our case,
∞∑

l=0

ha,l ω
l
= Π

(
e−

iθ
2 h
(

ae−
iθ
2 + ae

iθ
2

))
(ω)

=
1

2π

∫
S1

e
iθ
2 h
(

ae−
iθ
2 + ae

iθ
2

)
eiθ − ω

dθ.

If we change the parameter θ by µ = ae−
iθ
2 + ae

iθ
2 = cotβ sin( θ2 − α), then we have

B(α, β, ξ) =
2eiαω

π(ω + e2iα)

∫ cotβ

− cotβ

h(µ)

e
iθ
2 − ωe−

iθ
2
·

2dµ

cotβ cos( θ2 − α)

=
1+ ξ2 tan2 β

π i

∫ cotβ

− cotβ

h(µ)

µ− ξ
√

1− µ2 tan2 β
·

dµ√
1− µ2 tan2 β

.

Because h(t) is rapidly decreasing, B(α, β, ξ) extends continuously to β = 0 and we have B(α, 0, ξ) = G(ξ). Hence
ΦC is continuous on Z |D+∪W0 . In the same vein, ΦC is continuous on Z |D−∪W0 . Moreover, it is smooth because of
the above formula.

We check that O(1) −O(1) |RP2 is foliated by F . For any u ∈ O(1) −O(1) |RP2 , there is a unique standard disk
D in (CP2,RP2) which contains π(u) ∈ CP2

− RP2. Then, from (31) or (35), there is a unique holomorphic disk in
FD which contains u. �

Remark 31. The smoothness of ΦC is also checked in the proof of Lemma 33, actually ΦC is holomorphic on the
interior of Z for some complex structure on there.

Remark 32. For each t ∈ S2, the set of holomorphic disks {ΦC(p̃−1(x))}x∈Tt S2 is equal to FD , where D = q(p−1(t))
is the standard disk corresponding to t in the twistor correspondence for the standard Zoll projective structure.

Proof (Proof of 26). Notice that CP3
− P̂ = (O(1) − O(1) |RP2)

∐
(O(1) |RP2 −P). We require a family of

holomorphic disks through y0 whose interiors foliate O(1) |RP2 −P . Similarly to the standard case, such a family
is given by the disks

{[z1 : z2 : z3 : u + h(z3)] : Im u ≥ 0} ∪ {y0} (39)

for some (z1, z2, z3) ∈ R3
−{0}. There is a one-to-one correspondence between S2

∞ and the above holomorphic disks
which is given by putting (z1, z2, z3) = t × v for each point in S2

∞ of the form (7).
If we define F̂ as the union of F and the disks of the form (39), then F̂ is a continuous family of holomorphic

disks in (CP3, P̂) parameterized by G̃r2(R4). The conditions (] 1), (] 2), and the uniqueness for F̂ follow directly
from the construction. �
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7. Twistor correspondence

In this section, we give the proof of Theorem 24.

Lemma 33. For a given twistor space (O(1), P) corresponding to a function h ∈ iS(R)odd, there are a smooth map
ΦC : Z → O(1) and a function f ∈ S(R2)sym which satisfy the following properties:

(1) ΦC,x : Zx → O(1) is holomorphic on the interior of Zx = p̃−1(x) and ΦC,x (∂Zx ) ⊂ P, where ΦC,x is the
restriction of ΦC on Zx ,

(2) ΦC is injective on Z − ∂Z ,
(3) {p̃(Φ−1

C (y))}y∈P is equal to the set of β-surfaces on TS2,

respecting the self-dual metric on TS2 and the complex structure on Z corresponding to f . Such f is given by

f (x) = 2i
(
∂h
∂t

)∨
(x). (40)

Proof. The map ΦC is already constructed in Lemma 30, and the conditions (1) and (2) are already checked. We now
construct f ∈ S(R2)sym and check the condition (3). If ΦC is holomorphic on the interior of Z with respect to the
complex structure defined from f , then Eq. (27) holds, and this is equivalent to(

ω
∂

∂a
−
∂

∂a

)
((1− ω)F(a, ω)) = −2ω f. (41)

For given h, the function f is uniquely defined by (41). Actually, from the identity(
e

iθ
2
∂

∂a
− e−

iθ
2
∂

∂a

)
h
(

ae−
iθ
2 + ae

iθ
2

)
= 0,

we obtain

∂ha,l

∂a
=
∂ha,l−1

∂a
l ≥ 1, and

∂ha,0

∂a
is real valued.

Therefore, Eq. (41) holds if and only if f (x) = 2i ∂ha,0
∂a , where x = (x+1 , x+2 ) and a = i

2 (x
+

1 + ix+2 ). Here we have

∂ha,0

∂a
=

1
2π

∂

∂a

∫
S1

e−
iθ
2 h
(

ae
−iθ

2 + ae
iθ
2

)
dθ

=
1

2π

∫
S1

∂h
∂t

(
ae
−iθ

2 + ae
iθ
2

)
dθ

=

(
∂h
∂t

)∨
(x),

hence we put

f (x) = 2i
(
∂h
∂t

)∨
(x) (42)

which is real valued, rapidly decreasing and axisymmetric.
Now we prove that condition (3) holds for this f . Eq. (27) holds on {ζ+ ∈ C : Im ζ+ = 0}, therefore, for a fixed

ζ+ ∈ R, the functions

−x+1 − x+2 ζ
+ and − x+3 ζ

+
+ x+4 + H(x+1 , x+2 , ζ

+)

are annihilated by n1, n2 given by (13). Hence, p̃(Φ−1(y)) is a β-surface on TS2
|D+ . In the same way, p̃(Φ−1(y)) is

a β-surface on TS2
|D− therefore, p̃(Φ−1(y)) is a β-surface on TS2. Hence, condition (3) holds. �
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Lemma 34. For a given self-dual metric on TS2 corresponding to a function f ∈ S(R2)sym, there are a function
h ∈ iS(R)odd and a smooth surjection ΦC : Z → O(1) which satisfy conditions (1), (2) and (3) in Lemma 33
respecting the complex structure onZ defined from the self-dual metric and the twistor space (O(1), P) corresponding
to h. Such h is given by

h(t) = −
1
4
H f̂ (t). (43)

Proof. We have already seen in (26) that there is a natural map Φ : F = ∂Z → OR(1), which is given by

(α, 0, ε1, ε2, ξ) 7−→

[
− sinα : cosα : ξ : −ε1ξ + ε2 +

1
4

f̂ (ξ)
]
, (44)

on F |W0 . Now we deform this map so as to extend holomorphically to the upper half plane of ξ . For this purpose, we
put

h(ξ) =
1

4π i
pv.

∫
∞

−∞

f̂ (µ)
µ− ξ

dµ = −
1
4
H f̂ (ξ) (45)

which is odd, rapidly decreasing and pure imaginary valued. As in the previous section, G(ξ) = h(ξ)+ 1
4 f̂ (ξ) extends

holomorphically to {Im ξ > 0} by

G(ξ) =
1

4π i

∫
∞

−∞

f̂ (µ)
µ− ξ

dµ.

Instead of (44), we define a map Υ : Z |W0 → O(1) by

(α, 0, ε1, ε2, ξ) 7−→ [− sinα : cosα : ξ : −ε1ξ + ε2 + G(ξ)] .

Let (O(1), P) be the twistor space corresponding to h ∈ iS(R)odd, then Υx : Zx → O(1) is a holomorphic disk in
O(1) with boundary on P for each x ∈ TS2

|W0 .
By Lemma 33, we can construct a smooth map ΦC : Z → O(1) with ΦC(∂Z) = P , which is holomorphic on the

interior of Z with respect to the complex structure defined from the function

k(x) = 2i
(
∂h
∂t

)∨
(x).

Connecting with (45), we have

k(x) =
1
2i

(
∂

∂t
H f̂

)∨
(x).

By the inversion formula (A.3), we have k(x) = f (x). Therefore ΦC is holomorphic with respect to the given
complex structure on Z . Note that the restriction of ΦC to Z |W0 is equal to Υ . Conditions (1), (2) and (3) follow from
Lemma 33. �

Lemma 35. (43) defines a one-to-one correspondence between f (x) ∈ S(R2)sym and h(ξ) ∈ iS(R)odd.

Proof. From Schwartz’s theorem (Theorem 2.4 of [7]), we can check that the Radon transform f (x)→ ϕ(p) = f̂ (p)
is one-to-one from S(R2)sym to S(P)sym, where P is the set of unoriented lines in R2 and S(P)sym is the set of rapidly
decreasing functions on P which depend only on the distance from the origin. Then we can identify S(P)sym with
S(R)even the set of rapidly decreasing even functions on R.

On the other hand, the Hilbert transform ϕ → Hϕ is involutive, i.e. H2
= id. Moreover, H exchanges odd

functions and even functions, or real valued functions and pure imaginary valued functions. Altogether, the statement
holds. �

Proof (Proof of 24). The one-to-one correspondence is already given in Lemmas 33–35. Therefore, we construct the
double fibration G̃r2(R4) ← Ẑ → CP3 and we check conditions (1), (2), (3) and (4). As explained in the proof of
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Proposition 26, the family of holomorphic disks in (CP3, P̂) is parameterized by G̃r2(R4) for each h ∈ iS(R)odd. Let
Dx be the holomorphic disk in (CP3, P) which corresponds to x ∈ G̃r2(R4), and we put

Ẑ =
{
(x, y) ∈ G̃r2(R4)× CP3

: y ∈ Dx

}
.

We define ℘ : Ẑ → G̃r2(R4) and Ψ : Ẑ → CP3 as the projections. Respecting the natural embedding Z → Ẑ ,
℘ and Ψ are natural extension of p̃ and ΦC, respectively. From Proposition 26 and its proof, ℘ is a disk bundle with
fiberwise complex structure, and Ψ is a continuous surjection, so the condition (1) holds. Conditions (2) and (3) follow
from Proposition 26, Lemmas 33 and 34.

Lastly, condition (4) follows from the continuity of the family of holomorphic disks. Actually if y 6= y0 then
℘(Ψ−1(y)) is the closure of the β-surface p̃(Φ−1

C (y)) ⊂ TS2, and if y = y0 then ℘(Ψ−1(y0)) = S2
∞ is the singular

β-surface. �

From condition (3) of Theorem 24, ℘ induces a continuous map $ : (CP3
− P̂) → G̃r2(R4) which is smooth

on O(1) − O(1) |RP2 . The next proposition says that $ is not differentiable on O(1) |RP2 −P when the singularity
exists.

Proposition 36. $ is differentiable if and only if h(µ) ≡ 0.

Proof. Let V = {[1 : w1 : w2 : w3] ∈ CP3
} be an affine open set. Then V ∩ P̂ is given by {(w1, w2, w3) : Imw1 =

Imw2 = Imw3 − Im H = 0}, where H is a function of {(w1, w2) : Imw1 6= 0} given by

H = H±
(

Imw1w2

Imw1
,−

Imw2

Imw1
, w1

)
by using H± defined in (36) and so on, and Im H extends continuously on {Imw1 = 0} from the definition. Let U be
an open neighborhood of G̃r2(R4) given in the proof of Proposition 17. Then the image $(V \ P̂) is contained in U
and $ |V \P̂ is described by

u1 =
Imw1(w3 − H)

Im(w3 − H)
, u2 = −

Imw1

Im(w3 − H)
,

u3 = −
Imw2

Im(w3 − H)
, u4 =

Imw2(w3 − H)
Im(w3 − H)

.

Note that these equations are defined on {Imw1 6= 0} ∩ (V \ P̂); however, these are continuously extended on
V \ P̂ .

Now we prove that if $ is differentiable, then, for all A > 0, h(µ) = 0 for any µ ∈ [−A, A]. Let t ∈ (−ε, ε) be a
parameter on a small interval, and we fix s ∈ R. We take a smooth curve in V \ P̂ given by

(w1, w2, w3) = (s + it, A(−s + it), c(t)),

where c(t) is a smooth function. Then

H = H(t) = H±(0,−A, s + it)

is defined on t 6= 0 and Im H(t) is defined on t ∈ (−ε, ε). We have Im c(t)− Im H(t) 6= 0 for all t ∈ (−ε, ε), and

u4 = u4(t) = −
Re(c(t)− H(t))
Im (c(t)− H(t))

t − s.

Hence

lim
t→0

du4

dt
= − lim

t→0

Re(c(t)− H(t))
Im (c(t)− H(t))

.

Since Im H(t) is continuous, Re H(t) is also continuous if $ is differentiable. By definition, we have

H(t) = H+(0,−A, s + it) = F
(

A
2
, ω

)
=

4i
1− ω

∞∑
l=0

h A
2 ,l
ωl+1 on t > 0,

H(t) = H−(0,−A, s + it) = −F
(

A
2
, w−1

)
= −

4i
1− ω

∞∑
l=0

h A
2 ,l
ω−l on t < 0,
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where ω = ω(t) = s+it−i
s+it+i . If we evaluate a = A

2 to the expansion of h given in (30), we have

h
(

A cos
θ

2

)
=

∞∑
l=0

{
h A

2 ,l
eiθ(l+ 1

2 ) − h A
2 ,l

e−iθ(l+ 1
2 )
}
. (46)

Then we have

lim
t↘0

Im H(t) = lim
t↗0

Im H(t) =
i

sin θ
2

h
(

A cos
θ

2

)
,

lim
t↘0

Re H(t) = − lim
t↗0

Re H(t) = −
1

sin θ
2

∞∑
l=0

{
h A

2 ,l
eiθ(l+ 1

2 ) + h A
2 ,l

e−iθ(l+ 1
2 )
}
,

where we define θ = θ(s) ∈ (0, 2π) so that eiθ
=

s−i
s+i = ω(0). The first equation states that Im H(t) is indeed

continuous. The summand in the right-hand side of the second equation defines a Fourier expansion for some L2-
function for e

iθ
2 which is zero almost everywhere if Re H(t) is continuous for every s ∈ R. Hence h A

2 ,l
= 0 for all

l, and we have h(A cos θ2 ) = 0 for all θ from (46). Therefore, for all A > 0, h(µ) = 0 for any µ ∈ [−A, A] if $ is
differentiable. �
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Appendix. Radon transform

Here is a review of the Radon transform over R2 (cf. [7]). Let P̃ be the set of oriented lines in R2. Then
P̃ is diffeomorphic to S1

× R, where the correspondence (R/2πZ) × R 3 (σ, µ) 7→ ξ ∈ P̃ is given by
ξ = {t (cos σ, sin σ) + µ(− sin σ, cos σ)} using parameter t ∈ R. Let P be the set of unoriented lines in R2, then
P ∼= (S1

× R)/Z2 where the equivalence is (σ, µ) ∼ (σ + π,−µ). Let f be a rapidly decreasing complex valued
function over R2, then the Radon transform f̂ of f is defined by

f̂ (σ, µ) =
∫
∞

−∞

f (t cos σ − µ sin σ, t sin σ + µ cos σ)dt. (A.1)

Then f̂ is a rapidly decreasing function of P . The dual transform ϕ∨ of rapidly decreasing function ϕ of P is defined
by

ϕ∨(x) =
1

2π

∫
S1
ϕ(σ, µ(x, σ ))dσ, (A.2)

whereµ(x, µ) = −x1 sin σ+x2 cos σ . Note that (σ, µ(x, σ )) runs all the oriented lines through x ∈ R2. The inversion
formula is given by

f =
1
2i

(
∂

∂µ
Hµ f̂

)∨
, (A.3)

where Hµ is the Hilbert transform defined by

(Hµϕ)(σ, µ) =
i
π

pv.

∫
∞

−∞

ϕ(σ, ν)

ν − µ
dν. (A.4)
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